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A DIGITAL-TO-ANALOG CONVERSION C I R C U I T  U S I N G  

THI  RD-ORDER POLYNOMIAL INTERPOLATION 

By W i l l i a m  P. Dotson a n d  Joe H. W i l s o n  
M a n n e d  Spacecraf t  C e n t e r  

SUMMARY 

This report describes the basic design for a circuit that is capable of reconstruct- 
ing digitized analog signals by interpolating between given sample points with a third- 
order polynomial. 
design equations a r e  developed and implemented on an analog computer. 

From an analytical description of the circuit inputs and outputs, 

The theoretical e r ro r  performance of the third-order digital-to-analog converter 
is developed from the analytical description, and the e r ro r  performances a r e  compared 
with experimental results. 
digital-to-analog converter, and these results a r e  compared with results of the third- 
order digital-to-analog converter. 

The same is done for a zero-order (sample and hold) 

Both theoretical and experimental comparisons of third-order and zero-order 
digital- to-analog converters show a markedly superior performance of the third-order 
digital-to-analog converter. From these results, it is shown that the use of third- 
order digital- to-analog converters for analog-data reconstruction will allow a signifi- 
cant decrease in the bandwidth required for digital telemetry systems that transmit 
analog data, with no decrease in the quality of the data. 

INTRODUCTION 

In most telemetry systems in use today, digital-to-analog conversion is performed 
by zero-order (sample and hold) interpolation circuits. 
ive feature of relative simplicity. 
disadvantage of these circuits is frequently overlooked. 
higher than necessary sampling rates  must be used in the digital encoding of the analog 
signal. The use of higher sample rates  increases the bandwidth necessary to transmit 
the signal and thereby imposes additional cost and complexity on the remainder of the 
telemetry system. The design and performance of a digital-to-analog converter (DAC) 
that uses  a third-order polynomial interpolation between sample points a r e  presented 
in subsequent sections of this report; use of such a DAC permits lower sampling rates  
without decreasing the accuracy of the reconstructed analog signal. However, if the 
need to reduce the sampling rate  (bandwidth) does not exist', the use  of such a DAC will 
significantly improve the data quality. 

Such circuits have the attract- 

This disadvantage is that 
However, because of this attractiveness, the basic 



The theoretical and practical design and performance of a high-order (third order) 
interpolation circuit for digital-to-analog conversion of telemetry data are discussed in 
this report. The study described was initiated in an attempt to relieve the bandwidth 
problems in the NASA Manned Space Flight Network telemetry system that occur as a 
result of the high- sampling- rate biomedical data (i. e. , electrocardiograms (EKG' s ) ) ,  
and, at the same time, to maintain the present accuracy level of the data. 

SYMBOLS 

A 

cf 

G c  

e 

e in 

e out 

F, G, H 

f 

K =  ZJZi 

L 

m 

amplitude 

constant coefficients of polynomial te rms  

feedback capacitance 

initial- condition voltage applied to the circuit 

voltage 

input voltage 

output voltage 

scale factors 

frequency, Hz 

cut-off frequency, Hz 

sampling frequency, samples /sec 

root- mean- square spectrum of g(t) 

time function 

integrators 

integrator gain, 1/ RiCf 

ratio of the spectrum cut-off ra te  of the signal to 6 dB/octave 
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P', Q', R', S', T' 

P 

R 

Rf 

Ri 

'17 '2 

S 

T 

t 

TP1, TP2 

Y 

i. 
.. 
Y 
... 
Y 

'i 

E 

b E 

E 
P 

P 

r 

w 

waveform segments of an EKG signal 

normalized sampling rate, samples/cycle 

resistance 

feedback resistance 

input resistance 

switches 

Laplacian operator 

period, l / f ,  sec  

time, sec  

test  points 

reconstructed signal, V 

f i rs t  derivative of Y with respect to time 

second derivative of Y with respect to time 

third derivative of Y with respect to time 

analog signal as a function of time, V 

analog reconstruction of y(t) 

feedback impedance 

input impedance 

e r ror ,  percent o r  pulse code modulation (PCM) counts 

instantaneous e r ro r  measured near the base-line crossing, 
percent 

instantaneous e r ro r  measured at the peaks, percent 

reset  time, sec  

sampling period, sec  

angular frequency, rad/sec 
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Subscripts : 

ic initial condition 

n = 0, 1, 2, 3, . . . 

THEORY 

The analog-to-digital encoding used in the Apollo telemetry system is described 
as follows and is illustrated in figure 1. 

1. The analog signal (fig. l(a)) is sampled for i ts  amplitude value at time inter- 
vals spaced T seconds apart  (fig. l(b)), where T is the inverse of the sampling rate. 

2. The amplitude values are then pulse code modulation (PCM) encoded 
(fig. l (c))  before transmission. 

In zero-order digital-to-analog conversion, the PCM signal (fig. l(c))  is accepted 
and converted to a pulse amplitude modulation (PAM) signal (fig. l(b)), which is then 
fed to a holding circuit that provides an output curve similar to the curve shown in fig- 
ure  2(a). A third-order DAC wizl also accept PCM signals, convert them to PAM sig- 
nals, and then compute and output a third-order polynomial, which is a function of 
time, to fit the transmitted signal samples (fig. 2(b)). The reconstruction e r ro r s  that 
result from this and other processes have been found analytically by previous work 
(ref. 1). Some of the results of that work, along with experimental checks performed 
in this study, are shown in appendix A. 

The purpose of this report is to describe a method of designing a circuit on the 
analog computer for the third- and zero-order DAC's described in reference 1. The 
geometries for calculating the e r ro r s  for the third- and zero-order DAC's a r e  pre- 
sented in figures 3 and 4. The use of the design method would allow an experimental 
verification of the e r ro r  analysis shown in figures 3(c) and 4(c) and also would pro- 
vide the basic design for a prototype of the third-order DAC. 

I I I I 
0 5s 10s 15s 

Time, t 

I 

2% 
I I I I  1 

57 10 T 15 T 202 

Time. t 

(a) Analog signal. (b) Pulse-amplitude-modulation signal. 

Figure 1. - Analog-to-digital encoding. 
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110 
111 
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010 
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100 
100 
100 

(c) Pulse - code - modulation 
signal (eight quantiza- 
tion levels). 

Figure 1. - Concluded. 

I I I I I I I 1 I 
0 7 2s 3T 4s 5s 6 s  7 2  8+ 

2 Time, t 

c 
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- 0  5s lo+ 15s 207 

lime. t 

(a) Zero order. 

> 
i ar 
> . a -  - m c -  
._ 

E 1 1 1  1 I I 1  1 1  1 1 . 1  I I I I I 1  I I 
- 0  5s 10s 15s 20s 
E I 1  1 1  1 I I 1  1 1  1 1 . 1  I I I I I 1  I I 
- 0  5s 10s 15s 20s 

l ime, t 

(b) Third order. 
Figure 2. - Zero- and third-order 

DAC outputs. 

I- T I 

P' (a) Geometry for calculating eb. (b) Geometry for calculating E 

Figure 3.  - Reconstruction e r ro r s  for a zero-order DAC. 
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I I I I  
-7 0 T 2r -37 - - 

2 
- 

2 2 2 
Time, t 

(a) Geometry for calculating eb. 

-31 
2 
- z 

2 
T - 
2 

Time, t 

37 
2 
- 5s 

2 
- 

P' 
(b) Geometry for calculating E 

(c) Error  as a function of normalized 
sampling rate.  

Figure 3. - Concluded. 
Figure 4. - Reconstruction e r r o r s  for a 

third- order DAC . 

The development of the design equations for a third-order DAC proceeds as fol- 
lows. The development is facilitated by initially assuming the existence of a PAM ver- 
sion of the analog signal, such as that shown in figure 5. At t = 0, the circuit must 
compute and output a signal that is described by a third-order polynomial that would 
connect the input PAM signal points Y1-n, Y2-n, Y3-,, and Y4-n. The output actu- 

ally s tar ts  at t = 0, n = 0 (or  Y2) and continues only until t = T, n = 0 (or  Y3), s o  

that only the central two points of the given four a r e  connected. This completes one cy- 
cle of operation. 2 
t = T, n = 1 (or Y3). This cycle could be visualized as sliding the data points leftward 

past a fixed time scale, s o  that time, for the circuit, is always between 0 and T. At the 
same time, the circuit, in an  abstract sense, has both memory and precognition, be- 
cause the circuit must have knowledge of the samples Y1-n and Y4 - n. 

The next cycle begins a t  t = 0, n = 1 (or  Y ) and continues until 
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30 
1 

20 
I 

Normalized sampling rate, p. samplesfcycle 

(c) E r ro r  as a function of normalized 
sampling rate. 

Figure 4. - Concluded. 

Y1-" 

- 3 r  - 2 7  -7  0 r 2 7  3 7  4 r  55 

Time, t 

Figure 5. - Third-order PAM version of 
the analog signal. 

This knowledge is necessary because 
the circuit output between t = 0 and t = T 

must be described by 

(1) 
3 2 

y(t) = Bt + C t  + Dt + E 

which is a third-order polynomial. 
there are four unknowns (B, C,  D, and E) 
in equation (l), the signal voltages (Y 1, 
Y2, Y3, and Y ) must be given at  four 
sample t imes (-7,  0, 7,  and 27, respec- 
tively) (fig. 5). The coefficients B, C, 
D, and E may be evaluated from the follow- 
ing equation set .  

Because 

4 

3 2 + C(-7) Y(-T) = B(-T) + D(-T) + E = Y1 

(3) 
2 Y(O) = ~ ( 0 ) ~  + c(o) + D(O) + E = y2 

3 Y(7) = B(7) + C(7)' + D(T) + E = Y3 (4) 

(5) 
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As a result of solving equations (2) to (5) 

-Y1 + 3Y2 - 3Y3 + Y 4  
B =  n 

67 ' 

Y1 - 2Y2 + Y 3  
C =  n 

27 ' 

-2Y1 - 3Y2 + 6Y3 - Y4 

67 D =  

E = Y2 

The initial conditions of the output signal may also be calculated. If 

then 

3 2 Y(t) = Bt + Ct + Dt + E 

2 ?(t) = 3Bt + 2Ct + D 

Y(t) = 6Bt + 2C 

... 
Y(t) = 6B 

Y(0) = E 

Y ( 0 )  = D 

Y ( 0 )  = 2 c  

... 
Y(0) = 6B 
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BAS IC ANALOG DES I GN 

Digital-data 
words 

Equations (6) to (17) in the preceding section are sufficient for the design of an 
The equations that specify 

C, D, and 
analog circuit that will perform the desired interpolation. 
the initial conditions (eqs. (14) to (17)) of the circuit are in te rms  of B, 
E, which are in te rms  of Y1 to  Y4 (eqs. (6) to (9)). 

samples, in proper time sequence, must be accessed simultaneously for computation 
of the initial conditions each time a new sample is received by the circuit. 

The implication is that four 

Sample-and- 
hold digital- 
to- analog 
conversion 

This delay can be readily implemented with a device similar to a shift register 

=Y2, and Yl-n=Y1. The next 
(fig. 6). 
hold, from top to bottom, Yqen=Y4, Y3-,=Y3, Y2-n 

The operation of this arrangement is as follows. If n = 0, then the registers 

Clock c 

I nit ial-condit ion 
computation 
c i rcu i t ry  

Figure 6. - Sample-delay-circuitry 
block diagram. 

Serial-data words 

telemetry and serial-to- 

lronverter 

data value Y5 
register by a clock pulse which will incre- 
ment n by 1. Now the top register holds 

= Y  , the next register holds Y4 = Y5-n 4 - 
Y3, then Y3-n=Y2,  and Y2-n=Y1. The 
initial-condition circuitry is then ready to 
compute a new set  of initial conditions. 
sample-delay circuitry that was  discussed 
in the preceding section may be physically 
implemented with either analog o r  digital 
logic elements. 
in figures 7 and 8. 

will be read into the top - 

The 

Block diagrams are shown 

Serial-data words. 
Sample-and- parallel bits 
hold digital- 

parallel to-analog 
converter conversion 

Figure 8.- Flow chart for the use of c i r -  
cuitry with analog logic elements. 
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The initial-condition circuitry, which is driven by the sample-delay circuitry, 
is formed of summing amplifiers designed according to equations (6) to (9) and 
amplitude-scaling constraints. Consideration of full-scale values for Y 

of various sampling rates indicates that the initial-condition circuitry will  operate well 
if scaled according to the following equations, which are taken directly from equa- 
tions (6) to (9). The equations are developed in appendix B. 

to Y4 and 

The initial-condition circuitry should have the following four outputs. 

3 1  16 (- Y1 + 3Y2 - 3Y3 +Y4)  3B-r - - - _ - -  
8 

2 1  
2 3) 

- T - - s ( Y 1 - 2 Y  c-r - + Y  

(20) ) 2 Y 1 -  3 Y 2 + 6 Y 3 - Y 4  

The shown initial-condition-circuitry in figure 9. (A more extensive design is dis- -y1Z;> 

< 38T3 ._ 
cussion of the use of the initial-condition 
circuitry can be found in appendixes C 
and D. ) Different scaling factors may be 

+y2 

- 8 

10 0.1 
-y3 16 

- chosen, of course, provided appropriate +y4 16 +ylzFTp < cg 

rescaling in the following portions of the 
circuit is also completed. 

._ 
4 

2 -Y 
The remainder of the interpolation 

circuit consists of integrators that are 
driven by the initial-condition circuitry. If 
equations (17) and (18) are examined simul- 
taneously, it is clear that 

- 
+y3 8 

E 
4 3 -Y 

3 7 3 
16 y(o) (22) 

3B-r - - - _ - -  
8 

Figure 9. - Initial-condition-circuitry 
block diagram. 
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3 Therefore, i f  -3B7 /8 is input to an integrator with a gain of -2/7, the output will be 
T ~ Y / ~ .  This output requires an initial condition of 

2 ~ C T ~  - C 7  
8 8 4 
2 
7 -. - y(0) = - - - 

which is provided by the initial-condition circuitry, as specified by equations (16) and 
(19). 

Equation (19) involves not + C T ~ ,  but - C T ~ ,  because integrators invert their 
initial condition. 
initial conditions on each integrator initial- condition input appropriate to that integra- 
tor  output. 

This procedure is continued through two more integrations, with 

The final result is shown in figure 10. 

Figure 10. - Integrator-circuitry block 
diagram. 

The circuit discussed in this report 
requires three timing signals. One signal 
is a clock (or track) signal that is synchro- 
nous with the data. The other two signals 
(a hold signal and an  integrator-reset signal) 
a r e  derived from the clock signal. 

The track and hold signals a r e  neces- 
sary only fo r  the track and hold pairs that 
are used in a shift-register-like arrange- 
ment and may be eliminated if the sample- 
delay circuitry is implemented with digital 
logic. 
edge of the clock pulse, and the duration of 
the track signal is 0. 017. The integrator- 
reset  signal must occur after the clock pulse 
s o  that the signals have completed shifting 
before the resetting of the integrators. 
reset  signal reinitializes the integrators 
each time a new sample value enters the 
circuit. The complete circuit is shown in 
figure 11 with track and hold amplifiers in 
the sample-delay circuit. Example analog- 
data and data-clock sequences are shown in,  
figure 12. 

The track signal occurs at the leading 

The 
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Digital-data 
words 

Sample-and-hold 
digital -tO-analog 
conversion 

Differentiator Track signal, TP2 
Data clock 

I I 

I 
I words 

Analog-data 

I 

h--:ty4 
I 
I 

I ,  

"I, G: 2' 

(TPl 

38s - -  
-Y 8 

ty1;z9 -Y 2 

tyl$-p 

-- C T 2  4 

+y3 118 

+ y 2  DT 
4 
- 

3 - Y  

+y4 10124 

- E  

0.1 

38 T3  - 
8 

DT 
4 
- 

Figure 11. - Third-order DAC block diagram. 

e 

0 5s 10s  
Time, t 

- 
1 5 s  

(a) Sample-and- hold reconstruction of 
an example analog-data word 
sequence at TP1. 

A- 

N 

(b) Data-clock (or  track) signals 
a t  TP2. 

Figure 12. - Example data and clock sequence. 
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-2 

I I I ~ I I  I I  I I J  

5s 10s 15s 57 10s 15r 
Time, t Time, t 

(c) Signal from figure 12(a) phased (d) Signal from figure 12(c) delayed 
with the clock signal. one sampling period. 

m1 5s 10s I 15s I 
L I ~ I ~ 

5s 10s 15s 
Time, t l i m e ,  t 

(e) Signal from figure 12(c) delayed (f)  Signal from figure 12(c) delayed 
two sampling periods. three sampling periods. 

Figure 12. - Concluded. 

EXPER I MENTAL RESULTS 

The digital-to-analog conversions made in this experiment were carried out on 
an analog computer. A function generator was used to obtain the sinusoidal and square- 
wave inputs, and a polyrhythm generator was used to obtain the complex EKG analog 
inputs. 
recorder. 

The outputs of the system were displayed on an eight-channel strip-chart 

To check the initial-condition- circuitry outputs, a square-wave input w a s  used 
to simulate a step-function input. 
zero outputs, because the mathematical derivative of a step function is zero. 
functions 'Y, Y ,  and $ are shown to be zero in figures 1 3  and 14. The 0.2-hertz 
input in figure 15 did not yield derivative values of zero because the sampling rate  was 
only 5 samples/cycle, o r  2. 5 sampledhalf-cycle. Four o r  more samples/half-cycle 
a r e  required in order for the derivatives to settle to zero, because this would require 
that Y1 = Y2 = Y3 = Y This relationship can be 
seen by examining equations (6), (7), and (8). If By Cy and D are identically zero, 
then Y(t) = Y(t) = Y(t) = 0. 
puts were obtained with no adjustments to the theoretical gains of the initial-condition 
circuitry. 
dures and were found to agree exactly with the theoretical values. 

The initial-condition circuitry was then checked for 
The 

which implies that B = C = D = 0. 4' 

(See eqs. ( l l ) ,  (12), and (13). ) These zero-derivative out- 

The integrator gains were checked with respect to the calibration proce- 
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(p = 20 samples/cycle) as a function of time. 
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Figure 14. - Results of a 0.1-hertz square-wave input 
(p = 10 samples/cycle) as a function of time. 
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Figure 15. - Results of a 0.2-hertz square-wave input 
(p = 5 samples/cycle) as a function of time. 
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To obtain the peak and base-line crossing e r rors ,  a comparison of the third-order 
DAC and the zero-order DAC was  obtained by the method shown in figures 3 and 4. The 
results obtained with sinusoidal inputs of 0.01, 0.02, 0.03, 0.05, 0.07, O..l, 0.2, 0. 3, 
and 0.4 hertz are shown in figures 16 to 24. The e r r o r  analysis is shown in figures 3(c) 
and 4(c). The accuracy of the results is 1 2 . 5  percent. Because these data were ob- 
tained from the strip-chart recordings (figs. 16 to  24), the smallest scale obtainable 
was 5 volts. The experimental e r r o r s  obtained were less than the theoretical e r r o r s  
in some cases, partly because of the *2. 5-percent accuracy and the inability to re- 
produce exactly the base-line crossings and peaks of the theoretical analysis. A s  
shown in figures 3(c) and 4(c), the theoretical and experimental e r r o r s  closely agreed, 
and the general trends were the same. 
cuitry, the third-order DAC output lagged the input waveform by two sampling periods 
(2 seconds in this case) in  figures 16 to 24. 

Because of processing delays within the cir- 

Figures 25 to 35 show a comparison of the EKG input from the polyrhythm gen- 
erator, the third-order DAC output at 100 samples/sec, the zero-order DAC output at 
100 samples/sec, and the zero-order DAC output at 200 samples/sec. The zero-order 
DAC output was artifically delayed two sample periods to permit accurate phase ad- 
justments for e r r o r  calculations based on comparisons of both zero- and third-order 
DAC outputs with the original data. Because the input was from the polyrhythm gen- 
erator, the analog data were stable from cycle to cycle. 
in the DAC outputs w a s  caused by reconstruction e r r o r s  within the digital-to-analog 
conversions. 

Therefore, any variation 

Of the expanded versions of two of the inputs, the third-order DAC output most 
closely approximates the analog input (figs. 36 and 37). 
present in the Q wave in both figures on the third-order trace. The Q'-to-R' peak 
transition approximates a step function, and a step function with sharp corners requires 
an infinite number of te rms  to f i t  the curve. The third-order DAC generates ordy the 
first four t e rms  of fiat series. 
(fig. 37). 

However, a slight e r ro r  is 

The zero-order DAC is also in e r ro r  at this point 

It has been shown from both the analytical and the theoretical standpoints that a 
third-order DAC is more accurate than a zero-order DAC. 
put is much smoother because the output is piecewise continuous. 

The third-order DAC out- 

Figures 38 and 39 (cross plots of figs. 3(c) and 4(c)) show that, for  normalized 
sampling frequencies above 5 samples/cycle, it is advantageous to use a third-order 
DAC instead of a zero-order DAC at twice the rate. This procedure results in a 
2: 1 advantage. This ratio becomes increasingly larger as p is increased for the 
zero-order DAC. 
third-order DAC allows reduced sampling rates to be used with no degradation in ac- 
curacy and allows a substantial reduction in the bandwidth required to transmit the 
EKG's. 

This advantage is of major importance for two reasons. U s e  of the 
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Figure 27. - Sinus tachycardia. 
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Figure 28. - First-degree block. 
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Figure 38. - Plot of sampling frequency required for a third-order DAC to equal the 
performance of a zero-order DAC at the base-line crossing. 
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Figure 39. - Plot of sampling frequency required for a third-order DAC to 
equal the performance of a zero-order DAC at the waveform peaks. 
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CONCLUDING REMARKS 

The experimental results of sample data that were processed by the third- and 
zero-order digital-to-analog converters indicate a markedly superior performance on 
the part  of the third-order digital- to-analog converter. The experimental results are 
in  close agreement with the results predicted by the theory. 

It has been shown that the use of a third-order digital-to-analog converter will 
allow substantial reductions in the transmission bandwidth, with no decrease in the 
data quality. If no reductions in transmission bandwidth are necessary, then the use 
of a third-order digital-to-analog converter will greatly improve the quality of the re- 
constructed data. 

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, October 14, 1971 
921-10-00-00-72 
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APPENDIX A 

ERROR EQUATIONS 

The equations for the peak e r ro r  E and the base-line crossing e r ro r  $ for a 
P 

zero- and a third-order DAC were derived in reference 1 and are shown as follows. 
The zero ordinate of each figure was shifted to make the e r r o r  equations as simple as 
possible. 

ZERO-ORDER DAC 

Figure A-1 is used to find the instantaneous e r ro r  midway between two sample 
points for  a zero-order DAC. This e r r o r  is near the base-line crossing. The instan- 
taneous e r ro r  at t = 7/2 for the sample-point locations shown in figure A-1 is 

_I 

1 1 1 -J 
0 1 T Zr 3r 4s 5 7  67 l r  8r 97 

2 Time. 1 

Figure A-1. - Geometry for calculating 
cj, for a zero-order DAC. 

= A  Ymax 

y(t) = A sin (ut) (Alb) 

y’(t) = A sin [w(O)] 0 5 t < 7  (Alc) 

2T 
b -  T E - 100 sin (w ;) w = -  

y(;) = A sin (w 3 

T 
P 

7 = -  

y’(;)= 0 

where p = normalized sample rate in samples/cycle 
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(A2) 
a 

Eb = 100 sin - 
P 

Figure A-2 is used to find the instantaneous e r r o r  at the peaks for  a zero-order 
DAC. The instantaneous e r r o r  at t = 0 for  the sample-point locations shown in fig- 
u r e  A-2 is 

I T 

y(t) = A sin b(t +:I (A3b) 

y'(t) = A sin [o(: +:,] 
- i < t < -  ' (A3c) 2 -  2 

Time. t 

Figure A-2. - Geometry for calculating 
E for a zero-order DAC. 

y(0) = A sin k(o + g)] = A (A3d) 
P 

~ ' ( 0 )  = A sin [ (-;+;! 
= A  Ymax 

E = loo[ - sin [.(-;+gj\ o=- 2n 
P T 

T 
P 

r = -  

P 
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By using trigonometric identities, the equation 

E = l o o k  - cos ;) 
P 

can be obtained. Equations (A2) and (A4) are plotted in figure 3(c). 

THI RD-ORDER DAC 

Figure A-3 is used to find the instantaneous e r ro r  midway between two sample 
points for a third-order DAC. This e r ro r  is near the base-line crossing. 
taneous e r ro r  at t = 0 for  the sample-point locations shown in figure A-3 is 

The instan- 

-7 0 T 3r 
2 2 2 2 

- - -37 - 

l i m e ,  t 

Figure A-3. - Geometry for calculating 
$ for a third-order DAC. 

y(t) = A sin [ut + z + (A5b) 

3 2 y'(t) = Bt + Ct + Dt + E 

y( 0) = A sin [w(; + $1 (A5d) 

'ma, = A  (A 5f) 

eb = 100 { sin [ E  w - -I- - y - q  
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To find E, solve the set 

By using trigonometric identities, the equation 

(A81 
P 

can be obtained. 

39 

I ~~ 



Figure A-4 is used to  find the instantaneous e r r o r  at the peaks fo r  a third-order 
DAC. The instantaneous error at t = 0 for the sample-point locations shown in  fig- 
u r e  A-4 is 

(A94 

-F) a 2 I / y(t) = A sin [w(t +:I (A9b) - ._ - 
CL 

E a 

3 2 
- y'(t) = Bt + Ct + Dt + E 

- , 4  - 1 1 1 
-37 z - 7 - 37 - 57 

2 2 2 2 2 3T (A9c) 
- 

Time, t 

Figure A-4. - Geometry for  calculating 
E for  a third-order DAC. 

6494 P 

E P = l O O ( 1 -  g) 

To find E, solve the set 

3 2 
y(- g) = B(- g) + C(- g) +D(- g) + E = A sin [w(: - $1 

T T  3 2 
p(- i) = B(- i) + C (- i) + D(- i) + E = A s in  [ w ( ~  - 1)1 

y'($ = B(iY + C ( i r  + D(i) + E = A sin [w(: + ;)I 

(Alla) 

(A1 lb) 

(A1 1 c) 
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y'(g) = B(gY + C!($)2 + D(g) + E = A sin [ w (: - +- "27)l 
which results in 

(Alld) 

(Alle)  

where w = 27r/T and T = T/p. By using trigonometric identities, the equation 

P P 3=1 P 
E = 1 O O F  - ;(9 cos - - cos - 7r 

can be obtained. 

A comparison of the e r ro r s  obtained with a third-order DAC and a zero-order 
DAC can be determined by cross  plotting the normalized sampling rate of each and in- 
dicating the percent e r r o r s  at various points, as is done in figures 38 and 39. The 
figures show that for normalized sampling frequencies above 5 samples/cycle, it be- 
comes advantageous to use a third-order DAC instead of a zero-order DAC. In fig- 
ure  39 - the worst case of the two - for p = 10 on the zero-order DAC, p M 5 on 
the third-order DAC for the same accuracy. 
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APPENDIX B 

SPECIFIC DESIGN FORMULAS 

The basic design element in analog circuitry is the high-gain amplifier, which is 
indicated by the following symbol. 

Ideally, the high-gain amplifier has infinite open- loop gain, infinite input impedance, 
and zero output impedance. Normally, the gain is also assumed to be negative; that 
is, the amplifier inverts the signal. Under these conditions, for  the following circuit 
configuration, equation (B 1) is applicable. 

eout - - - & ein = -Ke. 
in 

1 

The gain for  this circuit configuration, then, is a function of only Z and Z.. f 1 
Rather than always drawing in the impedance elements, a new symbol is usually 
defined 
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where K is the ratio of the feedback impedance to the input impedance. Summing am- 
plifiers a r e  easily constructed from the previous configuration and have output voltages 
given by equation (B2). 

R f  
R i  ,I 

el- 
R i  ,2 

e2 - 
en 

0 
0 
0 

- -> 
R i  ,n 

e = -(Klel + K  e + .  . . +Knen) out 2 2  

Integrators are formed by changing the feedback element to a capacitor and have 
output voltages given by equation (B3). 

The te rm l/s is a Laplacian operator that indicates integration. The te rm l/RiCf 
controls the gain involved in the integration. The previous configuration may be 
abbreviated to 

where L = l/RiCf. 
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Integrators can also be configured to form the integral of summed inputs. 

Initial conditions must be known before solutions to integrals can be found. Known 
initial conditions can be placed on integrator outputs by appropriately charging the 
capacitor in the feedback loop. The time in which this capacitor is being charged is 
called the reset  time. Integrators, then, have additional circuitry that is used for  
setting or resetting the initial conditions on output. One possible circuit follows. 

e in  eout 

Reset 

Operate 

Because of the assumed infinite gain of the amplifier, the point A is at a virtual 
ground; theref ore  

e ic  eout 

Ric Ric 
-+- 

Equation (B4) can be written as follows by using Laplace-transform notation. 

e 
@ic +- out + ~ [ I s e  f out - e  out (0) I -o  
SRic Ric 

44 



or  

+ Cfeout(0) 
ic 

It should be apparent that a definite time interval is required to set the initial 
conditions on the integrator output. At t = 5RicCf, the output will  have reached 
99-1/3 percent of its correct value. After this time has elapsed, the integrator may 
be switched to the operate mode. The reset time then should be 

For a duty cycle of 99 percent (operate-to-reset ratio), p" 0.017, where T is the 
time interval between samples. A further constraint on the integrator circuitry is in 
its gain. The integrator gain L is 

1 1  L=-=- 
T RiCf 
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APPENDIX C 

SCALING COMPUTATIONS 

The scaling equations are developed by conjecturing a normalized full-scale 
sine-wave input sampled at a very high rate so that, in the limit, the sequential values 
of E (fig. 11) approach Y. That is 

lim 
P - *  

E - Y = sin u t  

The first three derivatives of Y can then be found. 

+ = w cos w t  

2 Y = -w sin wt  
.. 

... . 3  Y = -w cos ut 

If equations (8) and (15) from the text a r e  equated 

?(O) = D = - -2Y1 - 3Y2 + 6Y3 - Y4) - w COS w t  6: ( 
If equation (C5) is manipulated and multiplied by the scale factor F 

F67?(0) = F67D = F 2Y1 - 3Y2 + 6Y3 - Y4) - F ~ T W  COS w t  (- (C6) 

If sin w t  is a full-scale output, then F67w is chosen such that F67w cos ut is one- 
half full scale. (One-half full-scale output is chosen arbitrarily to avoid both of two 
common e r ro r  sources in analog devices, which are (1) the nonlinearity e r ro r s  at full- 
scale voltage outputs and (2) noise e r ro r s  at voltage outputs near zero. ) Therefore 
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and 

F=- 1 
12TW 

Because w = 27~f, 7 = l/fs, and p = fs/f, 

Equation (C9) implies that the scale factor depends on the lowest samples/cycle de- 
sired. If a rate of oily T samples/cycle is desired, p = T and F = 1/24. The 
initial condition on Y should then be scaled to be 

67P( 0) - TP( 0) - D7 

so that 

D 7 -  1 - 3Y2 + 6Y3 - Y4) 4 - 24 (-2y1 

Similarly, the scale factor G on Y ( 0 )  can be found. 

Y ( 0 )  = 2 c  = - 1 Y - 2Y2 + Y 3 )  
2 (  1 

7 

where 

lim z ( ~ l  1 - 2 y 2  +y3)- - w  2 sin Ut 
p - m 7  

and 

GT~Y(o) = 2G7 " c = G y1 - 2 y 2  + y3> 

(C 13) 
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where 

2 2  l im G(Y1 - 2Y2 + Y3) - - GT w sin wt 
P--O0 

2 2  Because GT w =1/2 

1 G=- 
2 2  2w T 

and 

2 1 G = -  

2 
fS 

For p = n-, G = 1/8. Thus 

T2Y(0) - CT 2 2.. GT Y(0) = - - - 8 4 

and 

4 CT2 = d Y 1  1 - 2Y2 +Y3)  

where 

Similarly, the sca le  factor H on Y(0) can be found. 
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Y(0) = 6 B = 3  (-Y1 + 3Y2 - 3Y3 + Y 4 )  

7 

-y + 3Y - 3Y3 +Y4) -  -w 3 cos wt  
lim 3( 1 2 

p - m T  



and 

where 

Because 

H T ~ Y ( O )  = ~ H T  3 B = H Y1 + 3Y2 - 3Y3 +Y4) 
(- 

for  p = 77, then H = 1/16. Thus 

3 3  1 
z HT w = 

and 

where 

3 

1677 
H = 3  P 

3... 73 ... 6 ~ 7 ~  1 
4) 

HT Y(0) = Y(0) = - = - (-Y1 + 3Y2 - 3Y3 + Y 16 16 

~ B T ~  1 
8 == (-Y1 + 3Y2 - 3y3 +y4)  
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APPENDIX D 

CALI BRATION PROCEDURES 

The initial-condition circuitry shown in figure 9 computes numerical approxima- 
tions to successive derivatives of the original waveform. The derivatives are then 
used to drive the integrator circuitry. Obviously, if the derivative calculations a r e  in 
e r ror ,  the final output will also be in e r ror .  

One means of calibrating the initial-condition circuitry is to put a sampled func- 

The easiest function to work with in this instance is a step 
tion with known derivatives into the total circuit and then examine the outputs of the 
initial-condition circuitry. 
input, so that in the steady state, all derivatives a r e  zero. With this input, the outputs 
of the initial-condition circuitry should be identically zero; if they a r e  not, the potenti- 
ometers in front of the summing amplifiers require adjustment. 

The integrator gains may also require adjustment. 
gain 1/r may not be realized because of tolerance limits on the feedback capacitors, 
input resistors,  et cetera. For this reason, potentiometers were included in front of 
each integrator for fine adjustments. 

Their theoretically required 

From an inspection of the circuit shown in figure 11, it should be clear that the 
integrator chain serves  only to fill in estimates of data values within the given sequence 
of data values Yz, which is the initial-condition input of the final integrator. It is in- 

tuitively obvious, then, that the potentiometers in front of each integrator should be 
adjusted so  that the final output is piecewise continuous. A sampled sine-wave input 
is easiest to work with in this instance. 

The outputs of the three integrators can be checked to see  if they a r e  piecewise 
continuous as follows. 
output of the first integrator (11) can be determined by 

First, the output of the integrator will  be determined. The 

3 2 I1 = -1- T ( ; ) d t  3Br 2 +% 

or  

2 3Br2 CT 
4 4 I1 = - (t) +- 
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The output can be checked to determine if it is piecewise continuous by evaluating 

That is, the continuity can be checked by asking whether 
and comparing the result with the initial condition at the next set of data values. 

t=T 

After solving, it is determined that 

Y2 - 2Y3 + Y 4  = Y2 - 2Y3 + Y 4  

Therefore, the output of I1 is piecewise continuous. 

or  

The output of integrator two (12) can be 

2 
I2 = -/(% + 

found as follows . 

4 cT2)2 - d t - -  DT 
7 4 

The output of I2 can be checked for piecewise continuity by asking whether 

or 
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When equation (D8) is solved, it is found that 

Therefore, the output of I2 is not necessarily piecewise continuous. 

The output of integrator three (13) is 

or 

(D11) 
3 2 I3 = Bt + C t  + D t  + E 

The output of I3 can be checked for piecewise continuity by determining whether 

1 3 1 ~ ~ ~  = E' (D12) 

or 

(-Y1 + 3Y2 - 3Y3 +Y4) ( 3 ) T 3  +(yl - 2y2 +y3)($) 
67 

When equation (D13) is solved, it is found that Y3 = Y3. Therefore, the output of I3 
is piecewise continuous. 

52 NASA-Langley, 1972 - 7 S-272 
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